Information on Result #718062

Linear OA(982, 115, F9, 45) (dual of [115, 33, 46]-code), using construction XX applied to C1 = C([68,29]), C2 = C([1,32]), C3 = C1 + C2 = C([1,29]), and C∩ = C1 ∩ C2 = C([68,32]) based on
  1. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,29}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(949, 80, F9, 32) (dual of [80, 31, 33]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,32], and designed minimum distance d ≥ |I|+1 = 33 [i]
  3. linear OA(965, 80, F9, 45) (dual of [80, 15, 46]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,32}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  4. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,29], and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(915, 28, F9, 12) (dual of [28, 13, 13]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.