Information on Result #718071

Linear OA(955, 87, F9, 35) (dual of [87, 32, 36]-code), using construction XX applied to C1 = C([78,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([78,32]) based on
  1. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,31}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  2. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−2,−1,…,32}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  4. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(91, 5, F9, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.