Information on Result #718088

Linear OA(981, 116, F9, 45) (dual of [116, 35, 46]-code), using construction XX applied to C1 = C([69,30]), C2 = C([1,33]), C3 = C1 + C2 = C([1,30]), and C∩ = C1 ∩ C2 = C([69,33]) based on
  1. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,30}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(951, 80, F9, 33) (dual of [80, 29, 34]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,33], and designed minimum distance d ≥ |I|+1 = 34 [i]
  3. linear OA(965, 80, F9, 45) (dual of [80, 15, 46]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−11,−10,…,33}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,30], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(914, 28, F9, 11) (dual of [28, 14, 12]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(981, 58, F9, 2, 45) (dual of [(58, 2), 35, 46]-NRT-code) [i]OOA Folding