Information on Result #718097

Linear OA(975, 108, F9, 44) (dual of [108, 33, 45]-code), using construction XX applied to C1 = C([70,30]), C2 = C([0,33]), C3 = C1 + C2 = C([0,30]), and C∩ = C1 ∩ C2 = C([70,33]) based on
  1. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,30}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
  3. linear OA(963, 80, F9, 44) (dual of [80, 17, 45]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,33}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(946, 80, F9, 31) (dual of [80, 34, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  5. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(975, 54, F9, 2, 44) (dual of [(54, 2), 33, 45]-NRT-code) [i]OOA Folding