Information on Result #718106

Linear OA(987, 118, F9, 49) (dual of [118, 31, 50]-code), using construction XX applied to C1 = C([8,49]), C2 = C([1,34]), C3 = C1 + C2 = C([8,34]), and C∩ = C1 ∩ C2 = C([1,49]) based on
  1. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,49}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(953, 80, F9, 34) (dual of [80, 27, 35]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,34], and designed minimum distance d ≥ |I|+1 = 35 [i]
  3. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  4. linear OA(945, 80, F9, 27) (dual of [80, 35, 28]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,34}, and designed minimum distance d ≥ |I|+1 = 28 [i]
  5. linear OA(917, 28, F9, 14) (dual of [28, 11, 15]-code), using
  6. linear OA(96, 10, F9, 6) (dual of [10, 4, 7]-code or 10-arc in PG(5,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.