Information on Result #718118

Linear OA(966, 94, F9, 42) (dual of [94, 28, 43]-code), using construction XX applied to C1 = C([0,39]), C2 = C([7,41]), C3 = C1 + C2 = C([7,39]), and C∩ = C1 ∩ C2 = C([0,41]) based on
  1. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  2. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,41}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  3. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
  4. linear OA(951, 80, F9, 33) (dual of [80, 29, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,39}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  5. linear OA(96, 10, F9, 6) (dual of [10, 4, 7]-code or 10-arc in PG(5,9)), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(966, 47, F9, 2, 42) (dual of [(47, 2), 28, 43]-NRT-code) [i]OOA Folding