Information on Result #718120

Linear OA(974, 106, F9, 44) (dual of [106, 32, 45]-code), using construction XX applied to C1 = C([10,50]), C2 = C([7,41]), C3 = C1 + C2 = C([10,41]), and C∩ = C1 ∩ C2 = C([7,50]) based on
  1. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,50}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(954, 80, F9, 35) (dual of [80, 26, 36]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,41}, and designed minimum distance d ≥ |I|+1 = 36 [i]
  3. linear OA(963, 80, F9, 44) (dual of [80, 17, 45]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,50}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,41}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(99, 18, F9, 8) (dual of [18, 9, 9]-code), using
  6. linear OA(92, 8, F9, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(974, 53, F9, 2, 44) (dual of [(53, 2), 32, 45]-NRT-code) [i]OOA Folding