Information on Result #718153

Linear OA(983, 116, F9, 49) (dual of [116, 33, 50]-code), using construction XX applied to C1 = C([10,49]), C2 = C([1,39]), C3 = C1 + C2 = C([10,39]), and C∩ = C1 ∩ C2 = C([1,49]) based on
  1. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,49}, and designed minimum distance d ≥ |I|+1 = 41 [i]
  2. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  4. linear OA(945, 80, F9, 30) (dual of [80, 35, 31]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,39}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(99, 17, F9, 8) (dual of [17, 8, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(982, 115, F9, 48) (dual of [115, 33, 49]-code) [i]Truncation
2Linear OA(981, 114, F9, 47) (dual of [114, 33, 48]-code) [i]
3Linear OA(980, 113, F9, 46) (dual of [113, 33, 47]-code) [i]
4Linear OA(979, 112, F9, 45) (dual of [112, 33, 46]-code) [i]
5Linear OOA(983, 58, F9, 2, 49) (dual of [(58, 2), 33, 50]-NRT-code) [i]OOA Folding