Information on Result #718165

Linear OA(992, 127, F9, 51) (dual of [127, 35, 52]-code), using construction XX applied to C1 = C([11,51]), C2 = C([1,39]), C3 = C1 + C2 = C([11,39]), and C∩ = C1 ∩ C2 = C([1,51]) based on
  1. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,51}, and designed minimum distance d ≥ |I|+1 = 42 [i]
  2. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  3. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,51], and designed minimum distance d ≥ |I|+1 = 52 [i]
  4. linear OA(944, 80, F9, 29) (dual of [80, 36, 30]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,39}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  5. linear OA(914, 27, F9, 11) (dual of [27, 13, 12]-code), using
  6. linear OA(910, 20, F9, 9) (dual of [20, 10, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(991, 126, F9, 50) (dual of [126, 35, 51]-code) [i]Truncation