Information on Result #718196

Linear OA(983, 112, F9, 50) (dual of [112, 29, 51]-code), using construction XX applied to C1 = C([8,49]), C2 = C([0,39]), C3 = C1 + C2 = C([8,39]), and C∩ = C1 ∩ C2 = C([0,49]) based on
  1. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,49}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  3. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  4. linear OA(949, 80, F9, 32) (dual of [80, 31, 33]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,39}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(98, 13, F9, 7) (dual of [13, 5, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(983, 56, F9, 2, 50) (dual of [(56, 2), 29, 51]-NRT-code) [i]OOA Folding