Information on Result #718200

Linear OA(983, 113, F9, 50) (dual of [113, 30, 51]-code), using construction XX applied to C1 = C([70,31]), C2 = C([0,39]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([70,39]) based on
  1. linear OA(959, 80, F9, 42) (dual of [80, 21, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,31}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  3. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,39}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  4. linear OA(948, 80, F9, 32) (dual of [80, 32, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(98, 14, F9, 7) (dual of [14, 6, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.