Information on Result #718214

Linear OA(984, 112, F9, 51) (dual of [112, 28, 52]-code), using construction XX applied to C1 = C([8,50]), C2 = C([0,40]), C3 = C1 + C2 = C([8,40]), and C∩ = C1 ∩ C2 = C([0,50]) based on
  1. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,50}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  2. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  3. linear OA(966, 80, F9, 51) (dual of [80, 14, 52]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,50], and designed minimum distance d ≥ |I|+1 = 52 [i]
  4. linear OA(950, 80, F9, 33) (dual of [80, 30, 34]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,40}, and designed minimum distance d ≥ |I|+1 = 34 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(98, 13, F9, 7) (dual of [13, 5, 8]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(984, 56, F9, 2, 51) (dual of [(56, 2), 28, 52]-NRT-code) [i]OOA Folding