Information on Result #718220

Linear OA(990, 116, F9, 53) (dual of [116, 26, 54]-code), using construction XX applied to C1 = C([7,52]), C2 = C([0,40]), C3 = C1 + C2 = C([7,40]), and C∩ = C1 ∩ C2 = C([0,52]) based on
  1. linear OA(967, 80, F9, 46) (dual of [80, 13, 47]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,52}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  3. linear OA(970, 80, F9, 53) (dual of [80, 10, 54]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,52], and designed minimum distance d ≥ |I|+1 = 54 [i]
  4. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,40}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  5. linear OA(914, 27, F9, 11) (dual of [27, 13, 12]-code), using
  6. linear OA(96, 9, F9, 6) (dual of [9, 3, 7]-code or 9-arc in PG(5,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.