Information on Result #718221

Linear OA(974, 100, F9, 46) (dual of [100, 26, 47]-code), using construction XX applied to C1 = C([8,49]), C2 = C([1,41]), C3 = C1 + C2 = C([8,41]), and C∩ = C1 ∩ C2 = C([1,49]) based on
  1. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,49}, and designed minimum distance d ≥ |I|+1 = 43 [i]
  2. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
  3. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  4. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {8,9,…,41}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  5. linear OA(94, 10, F9, 4) (dual of [10, 6, 5]-code or 10-arc in PG(3,9)), using
  6. linear OA(96, 10, F9, 6) (dual of [10, 4, 7]-code or 10-arc in PG(5,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(973, 99, F9, 45) (dual of [99, 26, 46]-code) [i]Truncation
2Linear OOA(974, 50, F9, 2, 46) (dual of [(50, 2), 26, 47]-NRT-code) [i]OOA Folding