Information on Result #718222

Linear OA(989, 114, F9, 54) (dual of [114, 25, 55]-code), using construction XX applied to C1 = C([68,39]), C2 = C([1,41]), C3 = C1 + C2 = C([1,39]), and C∩ = C1 ∩ C2 = C([68,41]) based on
  1. linear OA(969, 80, F9, 52) (dual of [80, 11, 53]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,39}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  2. linear OA(958, 80, F9, 41) (dual of [80, 22, 42]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,41], and designed minimum distance d ≥ |I|+1 = 42 [i]
  3. linear OA(972, 80, F9, 54) (dual of [80, 8, 55]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−12,−11,…,41}, and designed minimum distance d ≥ |I|+1 = 55 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(916, 30, F9, 12) (dual of [30, 14, 13]-code), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(989, 57, F9, 2, 54) (dual of [(57, 2), 25, 55]-NRT-code) [i]OOA Folding