Information on Result #718245

Linear OA(981, 106, F9, 52) (dual of [106, 25, 53]-code), using construction XX applied to C1 = C([71,39]), C2 = C([1,42]), C3 = C1 + C2 = C([1,39]), and C∩ = C1 ∩ C2 = C([71,42]) based on
  1. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,39}, and designed minimum distance d ≥ |I|+1 = 50 [i]
  2. linear OA(960, 80, F9, 42) (dual of [80, 20, 43]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,42], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(969, 80, F9, 52) (dual of [80, 11, 53]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,42}, and designed minimum distance d ≥ |I|+1 = 53 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,39], and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(92, 7, F9, 2) (dual of [7, 5, 3]-code or 7-arc in PG(1,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(981, 53, F9, 2, 52) (dual of [(53, 2), 25, 53]-NRT-code) [i]OOA Folding