Information on Result #718255

Linear OA(989, 115, F9, 53) (dual of [115, 26, 54]-code), using construction XX applied to C1 = C([9,52]), C2 = C([0,42]), C3 = C1 + C2 = C([9,42]), and C∩ = C1 ∩ C2 = C([0,52]) based on
  1. linear OA(963, 80, F9, 44) (dual of [80, 17, 45]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,52}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  2. linear OA(961, 80, F9, 43) (dual of [80, 19, 44]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,42], and designed minimum distance d ≥ |I|+1 = 44 [i]
  3. linear OA(970, 80, F9, 53) (dual of [80, 10, 54]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,52], and designed minimum distance d ≥ |I|+1 = 54 [i]
  4. linear OA(952, 80, F9, 34) (dual of [80, 28, 35]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,42}, and designed minimum distance d ≥ |I|+1 = 35 [i]
  5. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using
  6. linear OA(99, 16, F9, 8) (dual of [16, 7, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.