Information on Result #718281

Linear OA(974, 91, F9, 52) (dual of [91, 17, 53]-code), using construction XX applied to C1 = C([0,50]), C2 = C([7,51]), C3 = C1 + C2 = C([7,50]), and C∩ = C1 ∩ C2 = C([0,51]) based on
  1. linear OA(966, 80, F9, 51) (dual of [80, 14, 52]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,50], and designed minimum distance d ≥ |I|+1 = 52 [i]
  2. linear OA(965, 80, F9, 45) (dual of [80, 15, 46]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,51}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  3. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
  4. linear OA(963, 80, F9, 44) (dual of [80, 17, 45]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {7,8,…,50}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  5. linear OA(96, 9, F9, 6) (dual of [9, 3, 7]-code or 9-arc in PG(5,9)), using
  6. linear OA(90, 2, F9, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.