Information on Result #718286

Linear OA(992, 116, F9, 59) (dual of [116, 24, 60]-code), using construction XX applied to C1 = C([11,59]), C2 = C([1,49]), C3 = C1 + C2 = C([11,49]), and C∩ = C1 ∩ C2 = C([1,59]) based on
  1. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,59}, and designed minimum distance d ≥ |I|+1 = 50 [i]
  2. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  3. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,59], and designed minimum distance d ≥ |I|+1 = 60 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,49}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(910, 18, F9, 9) (dual of [18, 8, 10]-code), using
  6. linear OA(910, 18, F9, 9) (dual of [18, 8, 10]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(991, 115, F9, 58) (dual of [115, 24, 59]-code) [i]Truncation
2Linear OA(990, 114, F9, 57) (dual of [114, 24, 58]-code) [i]
3Linear OA(989, 113, F9, 56) (dual of [113, 24, 57]-code) [i]
4Linear OA(988, 112, F9, 55) (dual of [112, 24, 56]-code) [i]
5Linear OOA(992, 58, F9, 2, 59) (dual of [(58, 2), 24, 60]-NRT-code) [i]OOA Folding