Information on Result #718302

Linear OA(9100, 125, F9, 61) (dual of [125, 25, 62]-code), using construction XX applied to C1 = C([11,61]), C2 = C([1,49]), C3 = C1 + C2 = C([11,49]), and C∩ = C1 ∩ C2 = C([1,61]) based on
  1. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,61}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  2. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,49], and designed minimum distance d ≥ |I|+1 = 50 [i]
  3. linear OA(974, 80, F9, 61) (dual of [80, 6, 62]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,61], and designed minimum distance d ≥ |I|+1 = 62 [i]
  4. linear OA(955, 80, F9, 39) (dual of [80, 25, 40]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,49}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  5. linear OA(914, 26, F9, 11) (dual of [26, 12, 12]-code), using
  6. linear OA(910, 19, F9, 9) (dual of [19, 9, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9100, 125, F9, 60) (dual of [125, 25, 61]-code) [i]Strength Reduction
2Linear OA(9101, 126, F9, 61) (dual of [126, 25, 62]-code) [i]Code Embedding in Larger Space
3Linear OA(9102, 127, F9, 61) (dual of [127, 25, 62]-code) [i]
4Linear OA(999, 124, F9, 60) (dual of [124, 25, 61]-code) [i]Truncation
5Linear OA(998, 123, F9, 59) (dual of [123, 25, 60]-code) [i]
6Linear OA(996, 121, F9, 57) (dual of [121, 25, 58]-code) [i]
7Linear OA(995, 120, F9, 56) (dual of [120, 25, 57]-code) [i]