Information on Result #718328

Linear OA(984, 105, F9, 55) (dual of [105, 21, 56]-code), using construction XX applied to C1 = C([71,40]), C2 = C([0,49]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([71,49]) based on
  1. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,40}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  2. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−9,−8,…,49}, and designed minimum distance d ≥ |I|+1 = 60 [i]
  4. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  5. linear OA(94, 10, F9, 4) (dual of [10, 6, 5]-code or 10-arc in PG(3,9)), using
  6. linear OA(99, 15, F9, 8) (dual of [15, 6, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(984, 52, F9, 2, 55) (dual of [(52, 2), 20, 56]-NRT-code) [i]OOA Folding