Information on Result #718355

Linear OA(9105, 126, F9, 65) (dual of [126, 21, 66]-code), using construction XX applied to C1 = C([61,39]), C2 = C([0,49]), C3 = C1 + C2 = C([0,39]), and C∩ = C1 ∩ C2 = C([61,49]) based on
  1. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,39}, and designed minimum distance d ≥ |I|+1 = 60 [i]
  2. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,49}, and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(956, 80, F9, 40) (dual of [80, 24, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(918, 30, F9, 14) (dual of [30, 12, 15]-code), using
  6. linear OA(910, 16, F9, 9) (dual of [16, 6, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(9105, 63, F9, 2, 65) (dual of [(63, 2), 21, 66]-NRT-code) [i]OOA Folding