Information on Result #718366

Linear OA(9104, 121, F9, 67) (dual of [121, 17, 68]-code), using construction XX applied to C1 = C([61,40]), C2 = C([0,49]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([61,49]) based on
  1. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,40}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−19,−18,…,49}, and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(957, 80, F9, 41) (dual of [80, 23, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  5. linear OA(919, 28, F9, 16) (dual of [28, 9, 17]-code), using
  6. linear OA(99, 13, F9, 8) (dual of [13, 4, 9]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.