Information on Result #718400

Linear OA(986, 101, F9, 62) (dual of [101, 15, 63]-code), using construction XX applied to C1 = C([70,49]), C2 = C([0,51]), C3 = C1 + C2 = C([0,49]), and C∩ = C1 ∩ C2 = C([70,51]) based on
  1. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,49}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(968, 80, F9, 52) (dual of [80, 12, 53]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,51], and designed minimum distance d ≥ |I|+1 = 53 [i]
  3. linear OA(975, 80, F9, 62) (dual of [80, 5, 63]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {−10,−9,…,51}, and designed minimum distance d ≥ |I|+1 = 63 [i]
  4. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,49], and designed minimum distance d ≥ |I|+1 = 51 [i]
  5. linear OA(910, 17, F9, 9) (dual of [17, 7, 10]-code), using
  6. linear OA(91, 4, F9, 1) (dual of [4, 3, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.