Information on Result #718425

Linear OA(992, 106, F9, 66) (dual of [106, 14, 67]-code), using construction XX applied to C1 = C([10,69]), C2 = C([1,59]), C3 = C1 + C2 = C([10,59]), and C∩ = C1 ∩ C2 = C([1,69]) based on
  1. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,69}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,59], and designed minimum distance d ≥ |I|+1 = 60 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,69], and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,59}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  5. linear OA(910, 16, F9, 9) (dual of [16, 6, 10]-code), using
  6. linear OA(95, 10, F9, 5) (dual of [10, 5, 6]-code or 10-arc in PG(4,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(990, 104, F9, 64) (dual of [104, 14, 65]-code) [i]Truncation
2Linear OA(989, 103, F9, 63) (dual of [103, 14, 64]-code) [i]
3Linear OOA(992, 53, F9, 2, 66) (dual of [(53, 2), 14, 67]-NRT-code) [i]OOA Folding