Information on Result #718434

Linear OA(9100, 115, F9, 70) (dual of [115, 15, 71]-code), using construction XX applied to C1 = C([11,70]), C2 = C([1,59]), C3 = C1 + C2 = C([11,59]), and C∩ = C1 ∩ C2 = C([1,70]) based on
  1. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,70}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,59], and designed minimum distance d ≥ |I|+1 = 60 [i]
  3. linear OA(977, 80, F9, 70) (dual of [80, 3, 71]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,70], and designed minimum distance d ≥ |I|+1 = 71 [i]
  4. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,59}, and designed minimum distance d ≥ |I|+1 = 50 [i]
  5. linear OA(912, 19, F9, 10) (dual of [19, 7, 11]-code), using
  6. linear OA(910, 16, F9, 9) (dual of [16, 6, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.