Information on Result #718439

Linear OA(989, 99, F9, 66) (dual of [99, 10, 67]-code), using construction XX applied to C1 = C([9,69]), C2 = C([1,59]), C3 = C1 + C2 = C([9,59]), and C∩ = C1 ∩ C2 = C([1,69]) based on
  1. linear OA(974, 80, F9, 61) (dual of [80, 6, 62]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,69}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  2. linear OA(971, 80, F9, 59) (dual of [80, 9, 60]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,59], and designed minimum distance d ≥ |I|+1 = 60 [i]
  3. linear OA(976, 80, F9, 69) (dual of [80, 4, 70]-code), using the primitive narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [1,69], and designed minimum distance d ≥ |I|+1 = 70 [i]
  4. linear OA(967, 80, F9, 51) (dual of [80, 13, 52]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {9,10,…,59}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  5. linear OA(96, 10, F9, 6) (dual of [10, 4, 7]-code or 10-arc in PG(5,9)), using
  6. linear OA(97, 9, F9, 7) (dual of [9, 2, 8]-code or 9-arc in PG(6,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.