Information on Result #718458

Linear OA(9104, 120, F9, 71) (dual of [120, 16, 72]-code), using construction XX applied to C1 = C([11,70]), C2 = C([0,59]), C3 = C1 + C2 = C([11,59]), and C∩ = C1 ∩ C2 = C([0,70]) based on
  1. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,70}, and designed minimum distance d ≥ |I|+1 = 61 [i]
  2. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  3. linear OA(978, 80, F9, 71) (dual of [80, 2, 72]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,70], and designed minimum distance d ≥ |I|+1 = 72 [i]
  4. linear OA(964, 80, F9, 49) (dual of [80, 16, 50]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {11,12,…,59}, and designed minimum distance d ≥ |I|+1 = 50 [i]
  5. linear OA(912, 20, F9, 10) (dual of [20, 8, 11]-code), using
  6. linear OA(912, 20, F9, 10) (dual of [20, 8, 11]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(9105, 121, F9, 71) (dual of [121, 16, 72]-code) [i]Code Embedding in Larger Space
2Linear OA(9103, 119, F9, 70) (dual of [119, 16, 71]-code) [i]Truncation
3Linear OA(9102, 118, F9, 69) (dual of [118, 16, 70]-code) [i]
4Linear OA(999, 115, F9, 66) (dual of [115, 16, 67]-code) [i]
5Linear OOA(9104, 60, F9, 2, 71) (dual of [(60, 2), 16, 72]-NRT-code) [i]OOA Folding