Information on Result #718471

Linear OA(9100, 113, F9, 71) (dual of [113, 13, 72]-code), using construction XX applied to C1 = C([10,70]), C2 = C([0,59]), C3 = C1 + C2 = C([10,59]), and C∩ = C1 ∩ C2 = C([0,70]) based on
  1. linear OA(973, 80, F9, 61) (dual of [80, 7, 62]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,70}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  2. linear OA(972, 80, F9, 60) (dual of [80, 8, 61]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,59], and designed minimum distance d ≥ |I|+1 = 61 [i]
  3. linear OA(978, 80, F9, 71) (dual of [80, 2, 72]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 80 = 92−1, defining interval I = [0,70], and designed minimum distance d ≥ |I|+1 = 72 [i]
  4. linear OA(965, 80, F9, 50) (dual of [80, 15, 51]-code), using the primitive BCH-code C(I) with length 80 = 92−1, defining interval I = {10,11,…,59}, and designed minimum distance d ≥ |I|+1 = 51 [i]
  5. linear OA(912, 18, F9, 10) (dual of [18, 6, 11]-code), using
  6. linear OA(910, 15, F9, 9) (dual of [15, 5, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

None.