Information on Result #718627

Linear OA(939, 370, F9, 15) (dual of [370, 331, 16]-code), using construction XX applied to C1 = C([38,51]), C2 = C([37,50]), C3 = C1 + C2 = C([38,50]), and C∩ = C1 ∩ C2 = C([37,51]) based on
  1. linear OA(936, 364, F9, 14) (dual of [364, 328, 15]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {38,39,…,51}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  2. linear OA(936, 364, F9, 14) (dual of [364, 328, 15]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {37,38,…,50}, and designed minimum distance d ≥ |I|+1 = 15 [i]
  3. linear OA(939, 364, F9, 15) (dual of [364, 325, 16]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {37,38,…,51}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  4. linear OA(933, 364, F9, 13) (dual of [364, 331, 14]-code), using the BCH-code C(I) with length 364 | 93−1, defining interval I = {38,39,…,50}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
  6. linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(939, 370, F9, 2, 15) (dual of [(370, 2), 701, 16]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(939, 370, F9, 3, 15) (dual of [(370, 3), 1071, 16]-NRT-code) [i]
3Digital (24, 39, 370)-net over F9 [i]
4Linear OOA(939, 185, F9, 2, 15) (dual of [(185, 2), 331, 16]-NRT-code) [i]OOA Folding