Information on Result #719438

Linear OA(972, 766, F9, 23) (dual of [766, 694, 24]-code), using construction XX applied to C1 = C([82,100]), C2 = C([78,94]), C3 = C1 + C2 = C([82,94]), and C∩ = C1 ∩ C2 = C([78,100]) based on
  1. linear OA(949, 728, F9, 19) (dual of [728, 679, 20]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {82,83,…,100}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  2. linear OA(946, 728, F9, 17) (dual of [728, 682, 18]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {78,79,…,94}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  3. linear OA(961, 728, F9, 23) (dual of [728, 667, 24]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {78,79,…,100}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(934, 728, F9, 13) (dual of [728, 694, 14]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {82,83,…,94}, and designed minimum distance d ≥ |I|+1 = 14 [i]
  5. linear OA(97, 22, F9, 5) (dual of [22, 15, 6]-code), using
  6. linear OA(94, 16, F9, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(972, 383, F9, 2, 23) (dual of [(383, 2), 694, 24]-NRT-code) [i]OOA Folding
2Linear OOA(972, 255, F9, 3, 23) (dual of [(255, 3), 693, 24]-NRT-code) [i]