Information on Result #719575

Linear OA(983, 771, F9, 26) (dual of [771, 688, 27]-code), using construction XX applied to C1 = C([79,100]), C2 = C([75,93]), C3 = C1 + C2 = C([79,93]), and C∩ = C1 ∩ C2 = C([75,100]) based on
  1. linear OA(958, 728, F9, 22) (dual of [728, 670, 23]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {79,80,…,100}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(952, 728, F9, 19) (dual of [728, 676, 20]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {75,76,…,93}, and designed minimum distance d ≥ |I|+1 = 20 [i]
  3. linear OA(970, 728, F9, 26) (dual of [728, 658, 27]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {75,76,…,100}, and designed minimum distance d ≥ |I|+1 = 27 [i]
  4. linear OA(940, 728, F9, 15) (dual of [728, 688, 16]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {79,80,…,93}, and designed minimum distance d ≥ |I|+1 = 16 [i]
  5. linear OA(99, 27, F9, 6) (dual of [27, 18, 7]-code), using
  6. linear OA(94, 16, F9, 3) (dual of [16, 12, 4]-code or 16-cap in PG(3,9)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(983, 385, F9, 2, 26) (dual of [(385, 2), 687, 27]-NRT-code) [i]OOA Folding
2Linear OOA(983, 257, F9, 3, 26) (dual of [(257, 3), 688, 27]-NRT-code) [i]