Information on Result #719595
Linear OA(952, 728, F9, 20) (dual of [728, 676, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 93−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(952, 468, F9, 2, 20) (dual of [(468, 2), 884, 21]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(952, 468, F9, 3, 20) (dual of [(468, 3), 1352, 21]-NRT-code) | [i] | ||
3 | Digital (32, 52, 468)-net over F9 | [i] | ||
4 | Linear OA(984, 775, F9, 26) (dual of [775, 691, 27]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(955, 734, F9, 21) (dual of [734, 679, 22]-code) | [i] | ✔ | |
6 | Linear OA(989, 778, F9, 27) (dual of [778, 689, 28]-code) | [i] | ✔ | |
7 | Linear OA(970, 752, F9, 24) (dual of [752, 682, 25]-code) | [i] | ✔ | |
8 | Linear OA(959, 738, F9, 22) (dual of [738, 679, 23]-code) | [i] | ✔ | |
9 | Linear OA(996, 783, F9, 29) (dual of [783, 687, 30]-code) | [i] | ✔ | |
10 | Linear OA(981, 766, F9, 26) (dual of [766, 685, 27]-code) | [i] | ✔ | |
11 | Linear OA(964, 743, F9, 23) (dual of [743, 679, 24]-code) | [i] | ✔ | |
12 | Linear OA(963, 741, F9, 23) (dual of [741, 678, 24]-code) | [i] | ✔ | |
13 | Linear OA(995, 780, F9, 29) (dual of [780, 685, 30]-code) | [i] | ✔ | |
14 | Linear OA(994, 778, F9, 29) (dual of [778, 684, 30]-code) | [i] | ✔ | |
15 | Linear OA(986, 769, F9, 27) (dual of [769, 683, 28]-code) | [i] | ✔ | |
16 | Linear OA(979, 761, F9, 26) (dual of [761, 682, 27]-code) | [i] | ✔ | |
17 | Linear OA(968, 747, F9, 24) (dual of [747, 679, 25]-code) | [i] | ✔ | |
18 | Linear OA(993, 774, F9, 29) (dual of [774, 681, 30]-code) | [i] | ✔ | |
19 | Linear OA(985, 767, F9, 27) (dual of [767, 682, 28]-code) | [i] | ✔ | |
20 | Linear OA(984, 764, F9, 27) (dual of [764, 680, 28]-code) | [i] | ✔ | |
21 | Linear OA(973, 752, F9, 25) (dual of [752, 679, 26]-code) | [i] | ✔ | |
22 | Linear OA(977, 756, F9, 26) (dual of [756, 679, 27]-code) | [i] | ✔ | |
23 | Linear OA(983, 762, F9, 27) (dual of [762, 679, 28]-code) | [i] | ✔ | |
24 | Linear OA(982, 759, F9, 27) (dual of [759, 677, 28]-code) | [i] | ✔ | |
25 | Linear OA(958, 734, F9, 22) (dual of [734, 676, 23]-code) | [i] | ✔ | |
26 | Linear OA(962, 738, F9, 23) (dual of [738, 676, 24]-code) | [i] | ✔ | |
27 | Linear OA(966, 741, F9, 24) (dual of [741, 675, 25]-code) | [i] | ✔ | |
28 | Linear OA(971, 747, F9, 25) (dual of [747, 676, 26]-code) | [i] | ✔ | |
29 | Linear OA(976, 752, F9, 26) (dual of [752, 676, 27]-code) | [i] | ✔ | |
30 | Linear OA(980, 756, F9, 27) (dual of [756, 676, 28]-code) | [i] | ✔ | |
31 | Linear OA(966, 742, F9, 24) (dual of [742, 676, 25]-code) | [i] | ✔ | |
32 | Linear OA(970, 745, F9, 25) (dual of [745, 675, 26]-code) | [i] | ✔ | |
33 | Linear OA(975, 751, F9, 26) (dual of [751, 676, 27]-code) | [i] | ✔ | |
34 | Linear OA(979, 751, F9, 27) (dual of [751, 672, 28]-code) | [i] | ✔ | |
35 | Linear OA(995, 765, F9, 31) (dual of [765, 670, 32]-code) | [i] | ✔ | |
36 | Linear OA(994, 763, F9, 31) (dual of [763, 669, 32]-code) | [i] | ✔ | |
37 | Linear OA(999, 768, F9, 32) (dual of [768, 669, 33]-code) | [i] | ✔ | |
38 | Linear OA(9104, 774, F9, 33) (dual of [774, 670, 34]-code) | [i] | ✔ | |
39 | Linear OA(9103, 772, F9, 33) (dual of [772, 669, 34]-code) | [i] | ✔ | |
40 | Linear OA(9108, 777, F9, 34) (dual of [777, 669, 35]-code) | [i] | ✔ | |
41 | Linear OA(9115, 788, F9, 35) (dual of [788, 673, 36]-code) | [i] | ✔ | |
42 | Linear OA(9113, 783, F9, 35) (dual of [783, 670, 36]-code) | [i] | ✔ | |
43 | Linear OA(9112, 781, F9, 35) (dual of [781, 669, 36]-code) | [i] | ✔ |