Information on Result #720409
Linear OA(9103, 741, F9, 38) (dual of [741, 638, 39]-code), using construction XX applied to C1 = C([55,91]), C2 = C([59,92]), C3 = C1 + C2 = C([59,91]), and C∩ = C1 ∩ C2 = C([55,92]) based on
- linear OA(997, 728, F9, 37) (dual of [728, 631, 38]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {55,56,…,91}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(991, 728, F9, 34) (dual of [728, 637, 35]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {59,60,…,92}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(9100, 728, F9, 38) (dual of [728, 628, 39]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {55,56,…,92}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(988, 728, F9, 33) (dual of [728, 640, 34]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {59,60,…,91}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9103, 370, F9, 2, 38) (dual of [(370, 2), 637, 39]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(9103, 247, F9, 3, 38) (dual of [(247, 3), 638, 39]-NRT-code) | [i] |