Information on Result #720617
Linear OA(9108, 740, F9, 40) (dual of [740, 632, 41]-code), using construction XX applied to C1 = C([726,36]), C2 = C([1,37]), C3 = C1 + C2 = C([1,36]), and C∩ = C1 ∩ C2 = C([726,37]) based on
- linear OA(9103, 728, F9, 39) (dual of [728, 625, 40]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {−2,−1,…,36}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(999, 728, F9, 37) (dual of [728, 629, 38]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 93−1, defining interval I = [1,37], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(9106, 728, F9, 40) (dual of [728, 622, 41]-code), using the primitive BCH-code C(I) with length 728 = 93−1, defining interval I = {−2,−1,…,37}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(996, 728, F9, 36) (dual of [728, 632, 37]-code), using the primitive narrow-sense BCH-code C(I) with length 728 = 93−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(92, 9, F9, 2) (dual of [9, 7, 3]-code or 9-arc in PG(1,9)), using
- Reed–Solomon code RS(7,9) [i]
- linear OA(90, 3, F9, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9108, 370, F9, 2, 40) (dual of [(370, 2), 632, 41]-NRT-code) | [i] | OOA Folding |