Information on Result #721147
Linear OA(9108, 834, F9, 31) (dual of [834, 726, 32]-code), using construction XX applied to C1 = C([186,215]), C2 = C([185,211]), C3 = C1 + C2 = C([186,211]), and C∩ = C1 ∩ C2 = C([185,215]) based on
- linear OA(9101, 820, F9, 30) (dual of [820, 719, 31]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {186,187,…,215}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(997, 820, F9, 27) (dual of [820, 723, 28]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,211}, and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(9105, 820, F9, 31) (dual of [820, 715, 32]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,215}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(993, 820, F9, 26) (dual of [820, 727, 27]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {186,187,…,211}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.