Information on Result #721192
Linear OA(9123, 833, F9, 36) (dual of [833, 710, 37]-code), using construction XX applied to C1 = C([70,104]), C2 = C([69,102]), C3 = C1 + C2 = C([70,102]), and C∩ = C1 ∩ C2 = C([69,104]) based on
- linear OA(9118, 820, F9, 35) (dual of [820, 702, 36]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {70,71,…,104}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(9114, 820, F9, 34) (dual of [820, 706, 35]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {69,70,…,102}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(9122, 820, F9, 36) (dual of [820, 698, 37]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {69,70,…,104}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(9110, 820, F9, 33) (dual of [820, 710, 34]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {70,71,…,102}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(91, 9, F9, 1) (dual of [9, 8, 2]-code), using
- Reed–Solomon code RS(8,9) [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9123, 416, F9, 2, 36) (dual of [(416, 2), 709, 37]-NRT-code) | [i] | OOA Folding |