Information on Result #721196
Linear OA(9128, 834, F9, 38) (dual of [834, 706, 39]-code), using construction XX applied to C1 = C([71,107]), C2 = C([70,104]), C3 = C1 + C2 = C([71,104]), and C∩ = C1 ∩ C2 = C([70,107]) based on
- linear OA(9122, 820, F9, 37) (dual of [820, 698, 38]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {71,72,…,107}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(9118, 820, F9, 35) (dual of [820, 702, 36]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {70,71,…,104}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(9126, 820, F9, 38) (dual of [820, 694, 39]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {70,71,…,107}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(9114, 820, F9, 34) (dual of [820, 706, 35]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {71,72,…,104}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(92, 10, F9, 2) (dual of [10, 8, 3]-code or 10-arc in PG(1,9)), using
- extended Reed–Solomon code RSe(8,9) [i]
- Hamming code H(2,9) [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9128, 417, F9, 2, 38) (dual of [(417, 2), 706, 39]-NRT-code) | [i] | OOA Folding |