Information on Result #721210
Linear OA(9144, 834, F9, 42) (dual of [834, 690, 43]-code), using construction XX applied to C1 = C([185,225]), C2 = C([184,221]), C3 = C1 + C2 = C([185,221]), and C∩ = C1 ∩ C2 = C([184,225]) based on
- linear OA(9137, 820, F9, 41) (dual of [820, 683, 42]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,225}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(9133, 820, F9, 38) (dual of [820, 687, 39]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {184,185,…,221}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(9141, 820, F9, 42) (dual of [820, 679, 43]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {184,185,…,225}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(9129, 820, F9, 37) (dual of [820, 691, 38]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,221}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(93, 10, F9, 3) (dual of [10, 7, 4]-code or 10-arc in PG(2,9) or 10-cap in PG(2,9)), using
- extended Reed–Solomon code RSe(7,9) [i]
- oval in PG(2, 9) [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.