Information on Result #721236
Linear OA(9145, 828, F9, 43) (dual of [828, 683, 44]-code), using construction XX applied to C1 = C([185,226]), C2 = C([184,225]), C3 = C1 + C2 = C([185,225]), and C∩ = C1 ∩ C2 = C([184,226]) based on
- linear OA(9141, 820, F9, 42) (dual of [820, 679, 43]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,226}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(9141, 820, F9, 42) (dual of [820, 679, 43]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {184,185,…,225}, and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(9145, 820, F9, 43) (dual of [820, 675, 44]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {184,185,…,226}, and designed minimum distance d ≥ |I|+1 = 44 [i]
- linear OA(9137, 820, F9, 41) (dual of [820, 683, 42]-code), using the BCH-code C(I) with length 820 | 94−1, defining interval I = {185,186,…,225}, and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(90, s, F9, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(90, 4, F9, 0) (dual of [4, 4, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(9145, 414, F9, 2, 43) (dual of [(414, 2), 683, 44]-NRT-code) | [i] | OOA Folding |