Information on Result #721694

Linear OA(1660, 259, F16, 32) (dual of [259, 199, 33]-code), using construction XX applied to C1 = C([254,29]), C2 = C([0,30]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([254,30]) based on
  1. linear OA(1658, 255, F16, 31) (dual of [255, 197, 32]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(1658, 255, F16, 31) (dual of [255, 197, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(1660, 255, F16, 32) (dual of [255, 195, 33]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(1656, 255, F16, 30) (dual of [255, 199, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(1660, 129, F16, 2, 32) (dual of [(129, 2), 198, 33]-NRT-code) [i]OOA Folding