Information on Result #721736

Linear OA(1665, 259, F16, 37) (dual of [259, 194, 38]-code), using construction XX applied to C1 = C([254,34]), C2 = C([0,35]), C3 = C1 + C2 = C([0,34]), and C∩ = C1 ∩ C2 = C([254,35]) based on
  1. linear OA(1663, 255, F16, 36) (dual of [255, 192, 37]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
  2. linear OA(1663, 255, F16, 36) (dual of [255, 192, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
  3. linear OA(1665, 255, F16, 37) (dual of [255, 190, 38]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,35}, and designed minimum distance d ≥ |I|+1 = 38 [i]
  4. linear OA(1661, 255, F16, 35) (dual of [255, 194, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
  5. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(4130, 518, F4, 37) (dual of [518, 388, 38]-code) [i]Trace Code
2Linear OA(1672, 277, F16, 37) (dual of [277, 205, 38]-code) [i]VarÅ¡amov–Edel Lengthening
3Linear OA(1673, 288, F16, 37) (dual of [288, 215, 38]-code) [i]