Information on Result #721769

Linear OA(1669, 259, F16, 39) (dual of [259, 190, 40]-code), using construction XX applied to C1 = C([254,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([254,37]) based on
  1. linear OA(1667, 255, F16, 38) (dual of [255, 188, 39]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
  2. linear OA(1667, 255, F16, 38) (dual of [255, 188, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
  3. linear OA(1669, 255, F16, 39) (dual of [255, 186, 40]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
  4. linear OA(1665, 255, F16, 37) (dual of [255, 190, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
  5. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(1675, 273, F16, 39) (dual of [273, 198, 40]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(1676, 282, F16, 39) (dual of [282, 206, 40]-code) [i]
3Linear OA(1677, 297, F16, 39) (dual of [297, 220, 40]-code) [i]