Information on Result #721851

Linear OA(1680, 262, F16, 44) (dual of [262, 182, 45]-code), using construction XX applied to C1 = C([253,40]), C2 = C([0,41]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([253,41]) based on
  1. linear OA(1677, 255, F16, 43) (dual of [255, 178, 44]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−2,−1,…,40}, and designed minimum distance d ≥ |I|+1 = 44 [i]
  2. linear OA(1675, 255, F16, 42) (dual of [255, 180, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(1679, 255, F16, 44) (dual of [255, 176, 45]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−2,−1,…,41}, and designed minimum distance d ≥ |I|+1 = 45 [i]
  4. linear OA(1673, 255, F16, 41) (dual of [255, 182, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
  5. linear OA(161, 5, F16, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(1680, 131, F16, 2, 44) (dual of [(131, 2), 182, 45]-NRT-code) [i]OOA Folding