Information on Result #721862

Linear OA(1693, 277, F16, 48) (dual of [277, 184, 49]-code), using construction XX applied to C1 = C([249,39]), C2 = C([0,41]), C3 = C1 + C2 = C([0,39]), and C∩ = C1 ∩ C2 = C([249,41]) based on
  1. linear OA(1683, 255, F16, 46) (dual of [255, 172, 47]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−6,−5,…,39}, and designed minimum distance d ≥ |I|+1 = 47 [i]
  2. linear OA(1675, 255, F16, 42) (dual of [255, 180, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
  3. linear OA(1687, 255, F16, 48) (dual of [255, 168, 49]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−6,−5,…,41}, and designed minimum distance d ≥ |I|+1 = 49 [i]
  4. linear OA(1671, 255, F16, 40) (dual of [255, 184, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41 [i]
  5. linear OA(165, 17, F16, 5) (dual of [17, 12, 6]-code or 17-arc in PG(4,16)), using
  6. linear OA(161, 5, F16, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(1693, 138, F16, 2, 48) (dual of [(138, 2), 183, 49]-NRT-code) [i]OOA Folding