Information on Result #721865
Linear OA(1692, 274, F16, 48) (dual of [274, 182, 49]-code), using construction XX applied to C1 = C([249,40]), C2 = C([0,41]), C3 = C1 + C2 = C([0,40]), and C∩ = C1 ∩ C2 = C([249,41]) based on
- linear OA(1685, 255, F16, 47) (dual of [255, 170, 48]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−6,−5,…,40}, and designed minimum distance d ≥ |I|+1 = 48 [i]
- linear OA(1675, 255, F16, 42) (dual of [255, 180, 43]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,41], and designed minimum distance d ≥ |I|+1 = 43 [i]
- linear OA(1687, 255, F16, 48) (dual of [255, 168, 49]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−6,−5,…,41}, and designed minimum distance d ≥ |I|+1 = 49 [i]
- linear OA(1673, 255, F16, 41) (dual of [255, 182, 42]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,40], and designed minimum distance d ≥ |I|+1 = 42 [i]
- linear OA(165, 17, F16, 5) (dual of [17, 12, 6]-code or 17-arc in PG(4,16)), using
- extended Reed–Solomon code RSe(12,16) [i]
- the expurgated narrow-sense BCH-code C(I) with length 17 | 162−1, defining interval I = [0,2], and minimum distance d ≥ |{−2,−1,0,1,2}|+1 = 6 (BCH-bound) [i]
- linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(160, s, F16, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(1692, 137, F16, 2, 48) (dual of [(137, 2), 182, 49]-NRT-code) | [i] | OOA Folding |