Information on Result #721942

Linear OA(1689, 265, F16, 48) (dual of [265, 176, 49]-code), using construction XX applied to C1 = C([252,43]), C2 = C([0,44]), C3 = C1 + C2 = C([0,43]), and C∩ = C1 ∩ C2 = C([252,44]) based on
  1. linear OA(1685, 255, F16, 47) (dual of [255, 170, 48]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−3,−2,…,43}, and designed minimum distance d ≥ |I|+1 = 48 [i]
  2. linear OA(1681, 255, F16, 45) (dual of [255, 174, 46]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,44], and designed minimum distance d ≥ |I|+1 = 46 [i]
  3. linear OA(1687, 255, F16, 48) (dual of [255, 168, 49]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−3,−2,…,44}, and designed minimum distance d ≥ |I|+1 = 49 [i]
  4. linear OA(1679, 255, F16, 44) (dual of [255, 176, 45]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,43], and designed minimum distance d ≥ |I|+1 = 45 [i]
  5. linear OA(162, 8, F16, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,16)), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(1689, 132, F16, 2, 48) (dual of [(132, 2), 175, 49]-NRT-code) [i]OOA Folding