Information on Result #722092

Linear OA(16106, 276, F16, 57) (dual of [276, 170, 58]-code), using construction XX applied to C1 = C([252,51]), C2 = C([5,53]), C3 = C1 + C2 = C([5,51]), and C∩ = C1 ∩ C2 = C([252,53]) based on
  1. linear OA(1694, 255, F16, 55) (dual of [255, 161, 56]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−3,−2,…,51}, and designed minimum distance d ≥ |I|+1 = 56 [i]
  2. linear OA(1689, 255, F16, 49) (dual of [255, 166, 50]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {5,6,…,53}, and designed minimum distance d ≥ |I|+1 = 50 [i]
  3. linear OA(1698, 255, F16, 57) (dual of [255, 157, 58]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−3,−2,…,53}, and designed minimum distance d ≥ |I|+1 = 58 [i]
  4. linear OA(1685, 255, F16, 47) (dual of [255, 170, 48]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {5,6,…,51}, and designed minimum distance d ≥ |I|+1 = 48 [i]
  5. linear OA(167, 16, F16, 7) (dual of [16, 9, 8]-code or 16-arc in PG(6,16)), using
  6. linear OA(161, 5, F16, 1) (dual of [5, 4, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(16106, 138, F16, 2, 57) (dual of [(138, 2), 170, 58]-NRT-code) [i]OOA Folding