Information on Result #722153

Linear OA(16121, 294, F16, 61) (dual of [294, 173, 62]-code), using construction XX applied to C1 = C([251,50]), C2 = C([6,56]), C3 = C1 + C2 = C([6,50]), and C∩ = C1 ∩ C2 = C([251,56]) based on
  1. linear OA(1695, 255, F16, 55) (dual of [255, 160, 56]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−4,−3,…,50}, and designed minimum distance d ≥ |I|+1 = 56 [i]
  2. linear OA(1693, 255, F16, 51) (dual of [255, 162, 52]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {6,7,…,56}, and designed minimum distance d ≥ |I|+1 = 52 [i]
  3. linear OA(16106, 255, F16, 61) (dual of [255, 149, 62]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−4,−3,…,56}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  4. linear OA(1682, 255, F16, 45) (dual of [255, 173, 46]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {6,7,…,50}, and designed minimum distance d ≥ |I|+1 = 46 [i]
  5. linear OA(1610, 23, F16, 9) (dual of [23, 13, 10]-code), using
  6. linear OA(165, 16, F16, 5) (dual of [16, 11, 6]-code or 16-arc in PG(4,16)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(16121, 147, F16, 2, 61) (dual of [(147, 2), 173, 62]-NRT-code) [i]OOA Folding