Information on Result #722378

Linear OA(16125, 274, F16, 71) (dual of [274, 149, 72]-code), using construction XX applied to C1 = C([254,68]), C2 = C([8,69]), C3 = C1 + C2 = C([8,68]), and C∩ = C1 ∩ C2 = C([254,69]) based on
  1. linear OA(16115, 255, F16, 70) (dual of [255, 140, 71]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,68}, and designed minimum distance d ≥ |I|+1 = 71 [i]
  2. linear OA(16108, 255, F16, 62) (dual of [255, 147, 63]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {8,9,…,69}, and designed minimum distance d ≥ |I|+1 = 63 [i]
  3. linear OA(16117, 255, F16, 71) (dual of [255, 138, 72]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {−1,0,…,69}, and designed minimum distance d ≥ |I|+1 = 72 [i]
  4. linear OA(16106, 255, F16, 61) (dual of [255, 149, 62]-code), using the primitive BCH-code C(I) with length 255 = 162−1, defining interval I = {8,9,…,68}, and designed minimum distance d ≥ |I|+1 = 62 [i]
  5. linear OA(168, 17, F16, 8) (dual of [17, 9, 9]-code or 17-arc in PG(7,16)), using
  6. linear OA(160, 2, F16, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(16125, 137, F16, 2, 71) (dual of [(137, 2), 149, 72]-NRT-code) [i]OOA Folding